QUT to drive green hydrogen export through LNG-focused research center

Share

As the momentum is building behind hydrogen in Australia and abroad, the Queensland University of Technology (QUT) is leading the way in research and development with a range of initiatives on the ground. After it played a key role in Australia’s first green hydrogen shipment to Japan, QUT is now readying to drive the green hydrogen export industry through the Future Energy Exports Cooperative Research Centre (FEnEx CRC).

Officially established on Friday, the FEnEx CRC is a national collaboration of 28 industry, government, and research partners. As announced on Friday, the center won the backing of the Federal Government to the tune of $40 million, which builds upon a further $122 million in support from industry, state governments, and research organizations.

The CRC’s core mission is to ensure Australia’s LNG industry remains competitive, reduces its environmental footprint, and helps to grow hydrogen exports for new emerging markets. Its foundation project will be establishing the LNG Futures Facility, a 10 tonne-per-day research and teaching plant to be based at Kwinana, in Western Australia.

“FEnEx CRC will undertake cutting-edge, industry-led research, education and training to help sustain Australia’s position as a leading LNG exporter, and enable it to become the leading global exporter of clean hydrogen,” Professor Eric May, UWA’s Chevron Chair in Gas Process Engineering and FEnEx CRC Acting CEO, said. “Our established LNG sector is a key advantage in the race to grow a hydrogen export industry because of the similar workforce skills, engineering standards, shipping routes, and business relationships.”

But while Professor May has spoken about “clean” hydrogen, there has been no indication that this hydrogen will be truly clean and produced by electrolysis using solar or wind electricity. He said the CRC would support Australia’s National Hydrogen Strategy, which remains “technology-neutral”, with both hydrogen produced using renewable energy and the one via fossil fuels with “substantial” carbon capture and storage (CCS) in the game.

Throughout the consultation process last year, Chief Scientist Alan Finkel continued to push Australia toward hydrogen produced by solar and wind, but also remained attached to the fossil fuel-CSS idea. The stance was reflected in the Strategy itself.

Green hydrogen push

Nonetheless, Professor Ian Mackinnon, from QUT’s Institute for Future Environments, said FEnEx would build on the extensive work QUT had already done in the green hydrogen sphere, including partnering with Japanese company JXTG to produce and export green hydrogen to Japan and leading a $7.5 million research project to establish a renewable energy pilot plant producing green hydrogen at the Redlands Research Facility. This latter project is supported by four universities, Japanese and Australian corporations, the Queensland Government and the Commonwealth agency, ARENA.

“The FEnEx CRC is an excellent opportunity to translate the skills from one industry, and to build another export industry in the world of green hydrogen storage and utilization,” Professor Mackinnon said. As part of the FEnEx CRC, QUT’s Professor Mackinnon and Professor Anthony O’Mullane will be working on research projects involving the hydrogen export and value chains.

“This complements QUT’s activities in developing a renewable energy facility at Redlands to power the production of hydrogen using various electrolyser technologies,” Professor O’Mullane said. “This program will enable the next generation of scientists and engineers with the key skills for the transition to renewable power generation, storage, transport and utilisation. This CRC will accelerate efforts in the development of cheaper, more stable catalysts for rapid deployment in commercial scale electrolysers to produce green hydrogen.”

Another QUT professor, Rachel Parker will lead the Market Development Program in the FEnEx CRC, which will aim to identify the strongest global market opportunities for the development of Australia’s future energy exports. “The market development program will identify the business and social drivers and barriers to the adoption of technologies developed through the other CRC programs and will maximise the market and social benefits from the rapidly changing technological and industrial context of energy,” she said.