US startup claims hydrogen output for $1.2/kg or less via new water vapour electrolyser

Share

From pv magazine Global

Milwaukee-based Advanced Ionics has launched a new water vapour electrolyser that is designed to operate in conjunction with commonly available waste or process heat from industry. The Symbiotic Electrolyses system runs at temperatures below 650 C, and is reportedly able to produce hydrogen for US$0.85/kg (AU$1.2/kg) or less.

“This electrolyser is the first to work across a wide range of temperatures, from 100 C to 650 C,” Chad Mason told pv magazine. “Our Symbiotic technology is a new class of electrolyser. It is not alkaline, PEM, or Solide Oxide (SOEC).”

Alkaline, anion exchange membrane (AEM), and polymer electrolyte membrane (PEM) are cold electrolysers using liquid water. Solid oxide electrolysers are hot electrolysers working with heated steam, corresponding to higher efficiency. As said, the company’s electrolyser operates with temperatures in between. The idea is that temperatures in between allow for high efficiency, while also using cheaper materials for the large-scale assembly, including the stack.

The industry is currently trying to step away from platinum. Just last week, two different research teams (the first led by Imperial College London, the second by Clemson Nanomaterials Institute) presented ways to substitute the metal.

Russia is currently the second-largest platinum producer in the world, accounting for more than 15% of world production. Similarly, Advanced Ionics does not use platinum and iridium metals.

“We use common materials more regularly found in an alkaline electrolyser, but in a unique configuration,” Mason said. 

The technology uses engineered porous metal electrodes and composite ionic materials for its electrolyte. It does not require “delicate” perfluorinated membranes or “expensive” ceramics, said Mason. Advanced Ionics did not provide any additional details about the membrane. 

Andras Perl, a scientist at EnTranCe Centre of Expertise Energy at the Hanze University of Applied Sciences, explained that the charge carrier in the membrane would be a pivotal element in understanding the future of this technology. 

“Our electrolyser works in tandem with process and waste heat already being produced at industrial sites. By tapping into this existing energy source, we are able to dramatically reduce the electricity requirements for electrolysis, which is the dominant factor in the cost of green hydrogen production. Other electrolysers require a minimum of 40 kWh per kilogram of hydrogen, and usually closer to 50 kWh. We can produce hydrogen for below 35 kWh, and that results in a dramatically lower cost,” Mason said, noting that this assumes that economies of scale have been achieved.

Economies of scale are now key for competing technologies. The timing of funding is also essential. Last week, Advanced Ionics announced the closure of US$4.2 million (AU$5.9 million) of initial financing, led by Clean Energy Ventures. 

“Leveraging this new funding, Advanced Ionics will be developing a series of demonstration projects during the next year with partners before expanding to deploy larger-scale projects. In the near future, they will also build a large-scale electrolyser manufacturing facility to serve key markets such as Europe and North America,” Mason said. 

The company is currently in negotiation with private pilot deployment partners. It expects to take commercial orders in 2024 and ship in 2025. 

“We are being very aggressive on our timelines to match the desperate need for green hydrogen supply to decarbonise all aspects of our economy,” a spokesperson told pv magazine.

Clean Energy Ventures said it is optimistic about the technology.

“After more than five years of evaluating the sector, we backed Advanced Ionics because we believe this leadership team can scale a highly competitive technology to produce the lowest-cost green hydrogen at a scale,” said Daniel Goldman, co-founder and managing partner of Clean Energy Ventures.

According to IHS Markit, the levelised cost of green hydrogen produced through electrolysis was around US$4/kg  to US$5/kg in 2021 (between AU$5.6 – $7). Advanced Ionics claims to be able to provide clean hydrogen without the green premium, for less than US$1/kg ($1.4/kg) using Symbiotic steam electrolysis in many industrial locations. 

“The levelised cost of the hydrogen will depend roughly on the cost of heat, electricity, and the capital cost of the setup. If they get cheap heat, almost free electricity, and no expensive materials, then it seems feasible,” said Perl.

He noted that the results of their first demonstration projects would test the feasibility of the technology at a larger scale and in industrial environments.

This content is protected by copyright and may not be reused. If you want to cooperate with us and would like to reuse some of our content, please contact: editors@pv-magazine.com.

Popular content

Australian battery recycler inks deal with Chinese electric vehicle giant BYD Auto
06 September 2024 Advanced materials technology company Lithium Australia has signed an exclusive agreement with China-headquartered BYD Auto Industry Company to provid...