Australia’s first solar farm in Antarctica opens at Casey research station


The 105-panel array, mounted on the northern wall of Australia’s Casey station, will provide about 10% of the station’s total demand over a year, and reduce its reliance on diesel generators.

“It will cut fuel costs and emissions, as well as boost the station’s capacity in peak periods,” said Australian Antarctic Division Director, Kim Ellis.

The project is a collaboration between the Australian Antarctic Division and Abu Dhabi-based Masdar. The two sides will investigate a range of energy efficiency and energy management options at Australia’s Antarctic stations.

“This project will help to build expertise in, and the performance of, solar systems in cold and remote environments,” Mohamed Jameel Al Ramahi, Chief Executive Officer of Masdar, said. “It will test the durability and suitability of the solar panels to the strong wind and snow load in Antarctica and help us to determine if it is an efficient way of powering a station.”

The solar panels were sourced from Germany’s Aleo Solar, while the inverters came from Austria’s Fronius. Australian Antarctic Division engineers undertook wind modelling, produced technical drawings, and devised a special mounting system of brackets and rails to fit the corrugated shape of the green store cladding.

The installation process saw the brackets and rails installed first to hold the panels flush against the wall. The next step was to instal external cable ducting, internal cable trays, a switchboard, and three inverters to convert the variable direct current into 240V alternating current.

During the installation, local weather conditions with temperatures as low as -7°C and a number of blizzards provided headwinds. “The cold was a challenge, as the brackets and bolts are small and fiddly and can’t be installed while wearing gloves, so we had to use hand warmers to keep our fingers nimble,” Engineering Services Supervisor at Casey, Doreen McCurdy, said.

“On windy days we had to focus on the internal installation, as the elevated work platform we use outside can’t operate in winds above 15 knots. Once all the rails and brackets were in place though, we were able to install about 15 panels a day.”

While the panel installation is unusual in its flush mounting against a wall, it has been designed to strike a balance between maximum solar gain and stability in the wind, as well as ensuring the panels are easy to install, access and maintain.

“Back in the real world the sun typically goes overhead. Down here at the very low latitudes in the southern hemisphere, the sun typically doesn’t get much above the horizon, so the wall of the building gets more sunshine than the roof of the building,” explains infrastructure engineer Mark Pekin.

As for the next steps, the team plans to look at connecting the panels up to a battery storage system and assessing whether solar farms might be suitable for use at Australia’s other stations.

“Once the solar system is running we’ll see an immediate energy contribution and we’ll be able to see how it performs as part of the station’s power grid,” Ellis said. “From there we can then look at how to get more out of the technology in the future.”

This content is protected by copyright and may not be reused. If you want to cooperate with us and would like to reuse some of our content, please contact:

Popular content

‘Active natural hydrogen field’ confirmed in SA’s Yorke Peninsula
01 November 2023 Australian natural hydrogen explorer Gold Hydrogen says it has confirmed an “active natural hydrogen field” in South Australia with purities nearly ma...